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PREFACE

This text aims to give an introduction to select topics in discrete mathematics at a level
appropriate for first or second year undergraduate math majors, especially those who
intend to teach middle and high school mathematics. The book began as a set of notes
for the Discrete Mathematics course at the University of Northern Colorado. This course
serves both as a survey of the topics in discrete math and as the “bridge” course for math
majors, as UNC does not offer a separate “introduction to proofs” course. Most students
who take the course plan to teach, although there are a handful of students who will go
on to graduate school or study applied math or computer science. For these students the
current text hopefully is still of interest, but the intent is not to provide a solid mathematical
foundation for computer science, unlike the majority of textbooks on the subject.

Another difference between this text and most other discrete math books is that this
book is intended to be used in a class taught using problem oriented or inquiry based
methods. When I teach the class, I will assign sections for reading after first introducing
them in class by using a mix of group work and class discussion on a few interesting
problems. The text is meant to consolidate what we discover in class and serve as a reference
for students as they master the concepts and techniques covered in the unit. None-the-less,
every attempt has been made to make the text sufficient for self study as well, in a way that
hopefully mimics an inquiry based classroom.

The topics covered in this text were chosen to match the need of the students I teach at
UNC. The main areas of study are combinatorics, sequences, logic and proofs, and graph
theory, in that order. Induction is covered at the end of the chapter on sequences. Most
discrete books put logic first as a preliminary, which certainly has its advantages. However,
I wanted to discuss logic and proofs together, and found that doing both of these before
anything else was overwhelming for my students given that they didn’t yet have context
of other problems in the subject. Also, after spending a couple weeks on proofs, we would
hardly use that at all when covering combinatorics, so much of the progress we made was
quickly lost.

Depending on the speed of the class, it might be possible to include additional material.
In past semesters I have included generating functions (after sequences) and some basic
number theory (either after the logic and proofs chapter or at the very end of the course).
These additional topics are covered in appendix A.

While I (currently) believe this selection and order of topics is optimal, you should feel
free to skip around to what interests you. There are occasionally examples and exercises
that rely on earlier material, but I have tried to keep these to a minimum and usually
can either be skipped or understood without too much additional study. If you are an
instructor, feel free to edit the IXIEX source to fit your needs.

ix
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How 1O USE THIS BOOK

In addition to expository text, this book has a few features designed to encourage you to
interact with the mathematics.

INVESTIGATE! ACTIVITIES

Sprinkled throughout the sections (usually at the very beginning of a topic) you will find
activities designed to get you acquainted with the topic soon to be discussed. These are
similar (sometimes identical) to group activities I give students to introduce material. You
really should spend some time thinking about, or even working through, these problems
before reading the section. By priming yourself to the types of issues involved in the
material you are about to read, you will better understand what is to come. There are no
solutions provided for these problems, but don’t worry if you can’t solve them or are not
confident in your answers. My hope is that you will take this frustration with you while
you read the proceeding section. By the time you are done with the section, things should
be much clearer.

ExAaMPLES

I have tried to include the “correct” number of examples. For those examples which include
problems, full solutions are included. Before reading the solution, try to at least have an
understanding of what the problem is asking. Unlike some textbooks, the examples are
not meant to be all inclusive for problems you will see in the exercises. They should not
be used as a blueprint for solving other problems. Instead, use the examples to deepen
our understanding of the concepts and techniques discussed in each section. Then use this
understanding to solve the exercises at the end of each section.

EXERCISES

You get good at math through practice. Each section concludes with a small number of
exercises meant to solidify concepts and basic skills presented in that section. At the end
of each chapter, a larger collection of similar exercises is included (as a sort of “chapter
review”) which might bridge material of different sections in that chapter. Every exercise
has either a hint, answer or full solution (which in the pdf version of the text can be found
by clicking on the exercises number — clicking on the solution number will bring you back to
the exercise). Readers are encouraged to try these exercises before looking at the solution.
When I teach with this book, I assign these exercises as practice and then use them, or
similar problems, on quizzes and exams.

HomMewoRrk PrROBLEMS

Each chapter includes a small number of more involved problems — the type I would assign
as homework to be written up and collected each week. As many of these are problems I
assign, solutions are not included. If you are using this book for self study, consider these
additional Investigate! problems.



PrREFACE  Xi

PREVIOUS AND FUTURE EDITIONS

This current Fall 2015 edition of the text is essentially the first edition of the book. I have
previously compiled many of the sections in a book format for easy distribution, but those
were mostly just lecture notes and exercises (there was no index or Investigate problems;
very little in the way of consistent formatting).

My intent is to compile a new edition for each semester (so two editions per year)
which incorporate additions and corrections suggested by instructors and students who
use the text the previous semester. Thus I encourage you to send along any suggestions
and comments as you have them. For future editions, I will keep track of any major changes
here.

ACKNOWLEDGMENTS
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Oscar Levin, Ph.D.
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CHAPTER

INTRODUCTION AND PRELIMINARIES

Welcome to Discrete Mathematics. If this is your first time encountering the subject, you
will probably find discrete mathematics quite different from other math subjects. You
might not even know what discrete math is! Hopefully this short introduction will shed
some light on what the subject is about and what you can expect as you move forward in
your studies.

0.1 WHuAT 1S DISCRETE MATHEMATICS?

dis-crete / dis'kret.
Adjective: Individually separate and distinct.
Synonyms: separate - detached - distinct - abstract.

Defining discrete mathematics is hard because defining mathematics is hard. What is
mathematics? The study of numbers? In part, but you also study functions and lines
and triangles and parallelepipeds and vectors and .... Or perhaps you want to say that
mathematicsis a collection of tools that allow you to solve problems. What sort of problems?
Okay, those that involve numbers, functions, lines, triangles,. . .. Whatever your conception
of what mathematics is, try applying the concept of “discrete” to it, as defined above. Some
math fundamentally deals with ... stuff ... that is individually separate and distinct.

In an algebra or calculus class, you might have found a particular set of numbers (maybe
the set of number in the range of a function). You would represent this set as an interval:
[0, 0) is the range of f(x) = x? since the set of outputs of the function are all real numbers 0
and greater. This set of numbers is NOT discrete. The numbers in the set are not separated
by much at all. In fact, take any two numbers in the set and there are infinitely many more
between them which are also in the set. Discrete math could still ask about the range of
a function, but the set would not be an interval. Consider the function which gives the
number of children each person reading this has. What is the range? I'm guessing it is
something like {0,1,2,3}. Maybe 4 is in there too. But certainly there is nobody reading
this that has 1.32419 children. This set is discrete because the elements are separate. Also
notice that the inputs to the function are a discrete set as each input is an individual person.
You would not consider fractional inputs (there is nothing we care about 2/3 between a
pair of readers).

One way to get a feel for the subject is to consider the types of problems you solve in
discrete math. Here are a few simple examples:
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e Investigate!

N

One reason it is difficult to define discrete math is that it is a very broad description
which encapsulates a large number of subjects. In this course we will study four main
topics: combinatorics (the theory of ways things combine; in particular, how to count these
ways), sequences, logic, and graph theory. However, there are other topics that belong under
the discrete umbrella, including computer science, abstract algebra, number theory, game
theory, probability, and geometry (some of these, particularly the last two, have both

1.

\

Here are a few Discrete Math problems for you to try.
Note: Throughout the text you will see Investigate! activities like this one. Answer the
questions in these as best you can to give yourself a feel for what is coming next.

The most popular mathematician in the world is throwing a party for all of his
friends. As a way to kick things off, they decide that everyone should shake
hands. Assuming all 10 people at the party each shake hands with every other
person (but not themselves, obviously) exactly once, how many handshakes
take place?

At the warm-up event for Oscar’s All Star Hot Dog Eating Contest, Al ate one
hot dog. Bob then showed him up by eating three hot dogs. Not to be outdone,
Carl ate five. This continued with each contestant eating two more hot dogs
than the previous contestant. How many hot dogs did Zeno (the 26th and final
contestant) eat? How many hot dogs were eaten all together?

While walking through a fictional forest, you encounter three trolls. Each is
either a knight, who always tells the truth, or a knave, who always lies. The
trolls will not let you pass until you correctly identify each as either a knight
or a knave. Each troll makes a single statement:

Troll 1: If I am a knave, then there are exactly two knights here.

Troll 2: Troll 1 is lying.

Troll 3: Either we are all knaves or at least one of us is a knight.
Which troll is which?

Back in the days of yore, five small towns decided they wanted to build roads
directly connecting each pair of towns. While the towns had plenty of money
to build roads as long and as winding as they wished, it was very important
that the roads not intersect with each other (as stop signs had not yet been
invented). Also, tunnels and bridges were not allowed. Is it possible for each
of these towns to build a road to each of the four other towns without creating
any intersections?

@ Donot proceed until you have attempted the activity above ) J

discrete and non-discrete variants).
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Ultimately the best way to learn what discrete math is about is to do it. Let’s get started!
Before we can begin answering more complicated (and fun) problems, we must lay down
some foundation. We start by reviewing sets and functions in the framework of discrete
mathematics.

0.2 SeETS

The most fundamental objects we will use in our studies (and really in all of math) are
sets. Much of what follows might be review, but it is very important that you are fluent in
the language of set theory. Most of the notation we use below is standard, although some
might be a little different than what you have seen before.

For us, a set will simply be an unordered collection of objects. Two examples: we could
consider the set of all actors who have played The Doctor on Doctor Who, or the set of natural
numbers between 1 and 10 inclusive. In the first case, Tom Baker is a element (or member)
of the set, while Idris Elba, among many others, is not an element of the set. Also, the two
examples are of different sets. Two sets are equal exactly if they contain the exact same
elements.

NoTATION

We need some notation to make talking about sets easier. Consider,
A=1{1,2,3}.

This is read, “A is the set containing the elements 1, 2 and 3.” We use curly braces “{, }”
to enclose elements of a set. Some more notation:

a€d{a,b,c}.

The symbol “€” is read “is in” or “is an element of.” Thus the above means that a is an
element of the set containing the letters a4, b, and c. Note that this is a true statement. It
would also be true to say that d is not in that set:

dé¢{a,b,c}.

Be warned: we write “x € A” when we wish to express that one of the elements of the set
A is x. For example, consider the set,

A={1,b,{x,y,z},0}.

This is a strange set, to be sure. It contains four elements: the number 1, the letter b, the
set {x,y,z}, and the empty set () = {}, the set containing no elements). Is x in A? The
answer is no. None of the four elements in A are the letter x, so we must conclude that
x ¢ A. Similarly, if we considered the set B = {1, b}, then again B ¢ A. Even though the
elements of B are also elements of A, we cannot say that the set B is one of the things in the
collection A.
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If a set is finite, then we can describe it by simply listing the elements. Infinite sets exists
though, so we need to be able to describe them as well. For instance, if we want A to be the
set of all even natural numbers, would could write,

A={0,2,4,6,...},
but this is a little imprecise. Better would be
A={xeN:3neNkx=2n)}.

Breaking that down: “x € N” means x is in the set N (the set of natural numbers, starting
with 0), “:” is read “such that” and “3n € N(x = 2n)” is read “there exists an 7 in the
natural numbers for which x is two times n” (in other words, x is even). Slightly easier
might be,

A ={x: xiseven}.

Note: sometimes people use | or 3 for the “such that” symbol instead of the colon.
Defining a set using this sort of notation is very useful, although it takes some practice
to read them correctly. It is a way to describe the set of all things that satisfy some condition

(the condition is the logical statement after the “:” symbol). Here are some more examples.
We use the symbols A for “and” and V for “or” (which includes the “or both” for us).

Example:

Describe each of the following sets both in words and by listing out enough elements
to see the pattern.

1. {x :x+3eN} 3. {x:xeNV-xeN}
2. {x eN:x+3eN} 4, {x :x e NA—x e N}
Solution:

1. This is the set of all number which are 3 less than a natural number (i.e., that
if you add 3 to them, you get a natural number). The set could also be written
as {-3,-2,-1,0,1,2,...} (note that 0 is a natural number, so —3 is in this set
because -3 + 3 = 0).

2. This is the set of all natural numbers which are 3 less than a natural number.
So here we just have {0,1,2,3...}.

3. This is the set of all integers (positive and negative whole numbers, written
Z). In other words, {...,-2,-1,0,1,2,...}.

4. Here we want all numbers x such that x and —x are natural numbers. There
is only one: 0. So we have the set {0}.
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We already have a lot of notation, and there is more yet. Below is a handy chart of
symbols. Some of these will be discussed in greater detail as we move forward.

— Set Theory Notation

Symbol:  Read: Example:

{,} the set containing {1,2,3}. The braces enclose the elements of a
set. This is the set which contains the numbers
1,2, and 3.

such that {x : x > 2} is the set of all x such that x is

greater than 2.

€ is an element of 2 € {1,2,3} asserts that 2 is one of the elements
in the set {1,2,3}. However, 4 ¢ {1,2,3}.

c is a subset of A C B asserts that every element of A is also an
element of B.

C is a proper subset of A C B asserts that every element of A is also an
element of B, but A # B.

N intersection A N B is the set containing all elements which
are elements of both A and B.

U union A U B is the set containing all elements which
are elements of A or B or both.

X Cross A X B is the set of all ordered pairs (a, b) with
ae€Aandb € B.

\ set difference A\ B is the set containing all elements of A
which are not elements of B.

A complement (of A) A is the set of everything which is not an ele-
ment of A. The A can be any set here.

|A| cardinality (of A) |{4,5,6}| = 3 because there are 3 elements in
the set. Sometimes we call |A| the size of A.

Logic symbols:

A and X € AAx ¢ Bmeans x is both in the set A and
not in the set B.

\% or X € AV x ¢ B asserts that x is an element of A
or not an element of B, or both.

- not Another way to write x ¢ A is —x € A.

v for all Vx(x > 0) claims that every number is greater
than 0.

3 there exists Jx(x < 0) claims that there is a number less
than 0.
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— Special sets

The empty set is the set which contains no elements.

The universe set is the set of all elements.

The set of natural numbers. Thatis, N = {0,1,2,3...}.
The set of integers. Thatis, Z ={...,-2,-1,0,1,2,3,...}.

The set of rational numbers.

D ONZQS

The set of real numbers.

P(A) The power set of any set A is the set of all subsets of A.

e Investigate! ~N

1. Find the cardinality of each set below.

@) A=1{34,...,15}.
(b) B={neN:2<n <200}
(¢ C={n<100:n e NATIm e N(n =2m+1)}.

2. Find two sets A and B for which |A| = 5, |B| = 6, and |A U B| = 9. What is
|ANB|?

3. Find sets A and B with |A| = |B| such that |A U B| =7 and |A N B| = 3. What is
|A|?

4. LetA=1{1,2,...,10}. Define B, = {B C A : |B| = 2}. Find |B,|.

5. For any sets A and B, define AB = {ab:a € AAb e B}. If A ={1,2} and
B = {2,3,4}, what is |AB|? What is |A x B|?

N

@ Donot proceed until you have attempted the activity above )

ReLATIONSHIPS BETWEEN SETS

We have already said what it means for two sets to be equal: they have exactly the same
elements. Thus, for example,

{1,2,3} = {2,1,3}.
(Remember, the order the elements are written down in does not matter.) Also,
{1,2,3}y={1,1+1,1+1+1} = {1, 11,111}

since these are all ways to write the set containing the first three positive integers (how
we write them doesn’t matter, just what they are).
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What about the sets A = {1,2,3} and B = {1,2,3,4}? Clearly A # B, but notice that
every element of A is also an element of B. Because of this we say that A is a subset of B, or
in symbols A C B or A C B. (Both symbols are read “is a subset of.” The difference is that
sometimes we want to say that A is either equal to or a subset of B, in which case we use
C. This is analoguous to the difference between < and <.)

Example:
Let A =1{1,2,3,4,5,6}, B =1{2,4,6},C = {1,2,3} and D = {7,8,9}. Determine
which of the following are true, false, or meaningless.

1. A cB. 4. € A. 7.3¢eC.

2. BcA. 5. 0 Cc A. 8. 3cC.

3. BeC. 6. A<D. 9. {3} cC.
Solution:

1. False. For example, 1 € Abut1 ¢ B.

2. True. Every element in B is an element in A.

3. False. The elements in C are 1, 2, and 3. The set B is not equal to 1, 2, or 3.
4. False. A has exactly 6 elements, and none of them are the empty set.

5. True. Everything in the empty set (nothing) is also an element of A. Notice
that the empty set is a subset of every set.

6. Meaningless. A set cannot be less than another set.

True. 3 is one of the elements of the set C.

® N

Meaningless. 3 is not a set, so it cannot be a subset of another set.

9. True. 3 is the only element of the set {3}, and is an element of C, so every
element in {3} is an element of C.

In the example above, B is a subset of A. You might wonder what other sets are subsets
of A. If you collect all these subsets of A into a new set, we get a set of sets. We call the set
of all subsets of A the power set of A, and write it P(A).

Example:
Let A = {1,2,3}. Find P(A).
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Solution: P(A) is a set of sets, all of which are subsets of A. So

P(A) ={0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3} }.

Notice that while 2 € A, it is wrong to write 2 € P(A) since none of the elements in
P(A) are numbers! On the other hand, we do have {2} € P(A) because {2} C A.

What does a subset of P(A) look like? Notice that {2} ¢ P(A) because not
everything in {2} is in P(A). But we do have {{2}} C P(A). The only element of
{{2}} is the set {2} which is also an element of P(A). We could take the collection
of all subsets of (A) and call that P(£(A)). Or even the power set of that set of
sets of sets.

Another way to compare sets is by their size. Notice that in the example above, A has 6
elements, B, C, and D all have 3 elements. The size of a set is called the set’s cardinality. We
would write |A| = 6, |B| = 3, and so on. For sets that have a finite number of elements, the
cardinality of the set is simply the number of elements in the set. Note that the cardinality
of {1,2,3,2,1} is 3. We do not count repeats (in fact, {1,2,3,2,1} is exactly the same set
as {1,2,3}). There are sets with infinite cardinality, such as N, the set of rational numbers
(written Q), the set of even natural numbers, and the set of real numbers (R). It is possible
to distinguish between different infinite cardinalities, but that is beyond the scope of this
text. For us, a set will either be infinite, or finite; if it is finite, the we can determine its
cardinality by counting elements.

Example:
1. Find the cardinality of A = {23,24,...,37,38}.

2. Find the cardinality of B = {1, {2, 3,4}, 0}.
3. If C = {1,2,3}, what is the cardinality of (C)?

Solution:

1. Since 38 — 23 = 15, we can conclude that the cardinality of the set is |A| = 16
(you need to add one since 23 is included).

2. Here |B| = 3. The three elements are the number 1, the set {2,3,4}, and the
empty set.

3. We wrote out the elements of the power set £(C) above, and there are 8
elements (each of which is a set). So |P(C)| = 8.1

ou might wonder if there is a relationship between |A| and |P(A)| for all sets A. This is a good question
which we will return to in Chapter 1.
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OrerAaTIONS ON SETS

Is it possible to add two sets? Not really, however there is something similar. If we want to
combine two sets to get the collection of objects that are in either set, then we can take the
union of the two sets. Symbolically,

C=AUB,

read, “C is the union of A and B,” means that the elements of C are exactly the elements
which are either an element of A or an element of B (or an element of both). For example,
ifA={1,2,3}and B ={2,3,4},then AUB = {1,2,3,4}.

The other common operation on sets is intersection. We write,

C=ANB

and say, “C is the intersection of A and B,” when the elements in C are precisely those both
inAandinB. Soif A ={1,2,3} and B =42,3,4},then AN B = {2,3}.

Often when dealing with sets, we will have some understanding as to what “everything”
is. Perhaps we are only concerned with natural numbers. In this case we would say that our
universe is N. Sometimes we denote this universe by U. Given this context, we might wish
to speak of all the elements which are not in a particular set. We say B is the complement of
A, and write,

B=A
when B contains every element not contained in A. So if our universe is {1,2,...,9,10},

and A = {2,3,5,7}, then A = {1,4,6,8,9,10}.
Of course we can perform more than one operation at a time. For example, consider

ANB.

This is the set of all elements which are both elements of A and not elements of B. What
have we done? We’ve started with A and removed all of the elements which were in B.
Another way to write this is the set difference:

ANB=A\B.

It is important to remember that these operations (union, intersection, complement,
and difference) on sets produce other sets. Don’t confuse these with the symbols from the
previous section (element of and subset of). AN B is a set, while A C B is true or false. This
is the same difference as between 3 + 2 (which is a number) and 3 < 2 (which is false).

Example:
LetA={1,2,3,4,5,6},B={2,4,6},C={1,2,3}and D = {7,8,9}. If the universe
isU={1,2,...,10}, find:
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1. AUB. 4. AnD 7. (DNC)UANB.

2. ANB. 5. BUC 8. QUC.

3. BnC. 6. A\ B 9. 0nC.
Solution:

1. AUB =1{1,2,3,4,5,6} = A since everything in B is already in A.
2. ANB ={2,4,6} = B since everything in B is in A.

3. BN C = {2} as the only element of both B and C is 2.

4. AN D = 0since A and D have no common elements.

5. BUC =1{5,7,8,9,10}. First we find that BU C = {1, 2,3,4,6}, then we take
everything not in that set.

6. A\ B =1{1,3, 5}_since the elements 1, 3, and 5 are in A but not in B. This is
the same as A N B.

7. (DN E) UANB =1{1,3,5,7,8,9,10}. The set contains all elements that are
either in D but notin C ({7, 8,9}), or not in both A and B ({1,3,5,7,8,9,10}).

8. 0 U C = C since nothing is added by the empty set.

9. 0 N C = 0 since nothing can be both in a set and in the empty set.

You might notice that the symbols for union and intersection slightly resemble the logic
symbols for “or” and “and.” This is no accident. What does it mean for x to be an element
of A U B? It means that x is an element of A or x is an element of B (or both). That is,

x€AUB = x€AVxeB.
Similarly,
x€ANB S x€AAx€B.
Also, _
x€eA =4 —-(x € A).

which says x is an element of the complement of A if x is not an element of A.

There is one more way to combine sets which will be useful for us: the Cartesian product,
A x B. This sounds fancy but is nothing you haven’t seen before. When you graph a
function in calculus, you graph it in the Cartesian plane. This is the set of all ordered pairs
of real numbers (x, y). We can do this for any pair of sets, not just the real numbers with
themselves.

Put another way, A X B = {(a,b) : a € A A b € B}. The first coordinate comes from the
tirst set and the second coordinate comes from the second set. Sometimes we will want to
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take the Cartesian product of a set with itself, and this is fine: A XA = {(a,b):a,b € A}
(we might also write A? for this set). Notice that in A x A, we still want all ordered pairs,
not just the ones where the first and second coordinate are the same. We can also take
products of 3 or more sets, getting ordered triples, or quadruples, and so on.

Example:

Let A = {1,2} and B = {3,4,5}. Find A x B and A X A. How many elements do
you expect to be in B X B?

Solution: A x B ={(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)}.
AxA=A2={1,1),(1,2),(2,1),(2,2)}.

|IB X Bl = 9. There will be 3 pairs with first coordinate 3, three more with first
coordinate 4, and a final three with first coordinate 5.

VENN DiAGRrAMS

There is a very nice visual tool we can use to represent operations on sets. Venn diagrams
display sets as intersecting circles. We can shade the region we are talking about when we
carry out an operation. We can also represent cardinality of a particular set by putting the
number in the corresponding region.

A B A B

C

Each circle represents a set. The rectangle containing the circles represents the universe.
To represent combinations of these sets, we shade the corresponding region. For example,
we could draw A N B as:

Here is a representation of A N B, or equivalently A \ B:

A B
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A more complicated exampleis (BN C)U (CN A), as seen below.

A

C

B

Notice that the shaded regions above could also be arrived at in another way. We could
have started with all of C, then excluded the region where C and A overlap outside of B.

That regionis (AN C) N B. So the above Venn diagram also represents C N ((A NnC)Nn E).
So using just the picture, we have determined that

(BNCOU(CNA)=CNn((ANC)NB).

EXERCISES

1. LetA={1,2,3,4,5}, B =1{3,4,56,7} and C = {2,3,5}.

(a)
(b)
(©)
(d)
(e)
()
(g)

Find A N B.
Find A U B.
Find A \ B.
Find AN (BUC).
Find A x C.

Is C € A? Explain.
Is C € B? Explain.

2. Let A={xeN:3<x<13},B={xeN:xiseven},and C = {x € N: x is odd}.

(a)

Find A N B.

(b) Find A U B.
(c) Find BnC.
(d) Find BUC.

3. Find an example of sets A and B such that ANB = {3,5} and AUB = {2,3,5,7,8}.

4. Find an example of sets A and B such that A C Band A € B.

5. Recall Z ={...,-2,-1,0,1,2,...} (the integers). Let Z* = {1,2,3, ...} be the posi-
tive integers. Let 2Z be the even integers, 3Z be the multiples of 3, and so on.

(a) Is Z* € 277 Explain.
(b) Is2Z c Z*? Explain.
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8.

10.
11.

12.
13.
14.
15.
16.

(c) Find 2ZN3Z. Describe the set in words, and also in symbols (using a : symbol).

(d) Express {x € Z: 3y € Z(x =2y V x = 3y)} as a union or intersection of two
sets above.

Let A, be the set of all multiples of 2 except for 2. Let Az be the set of all multiples
of 3 except for 3. And so on, so that A, is the set of all multiple of n except for n, for
any n > 2. Describe (in words) the set Ay UAz U A3 U ---.

Draw a Venn diagram to represent each of the following;:

(a) AUB
(b) (AUB)
(c) An(BUC)
(d (AnB)ucC
) AnBNnC
() (AUB)\C

Describe a set in terms of A and B which has the following Venn diagram:

A B

Find the following cardinalities:

(@) |Alwhen A = {4,5,6,...,37}
(b) |Al|whenA ={x e Z:-2<x <100}
(c) |JAnB|whenA ={x e N:x <20} and B = {x € N: x is prime}

Let A =A{a,b,c}. Find P(A).

Let A = {1,2,...,10}. How many subsets of A contain exactly one element (i.e.,
how many singleton subsets are there). How many doubleton (containing exactly two
elements) are there?

LetA ={1,2,3,4,5,6}. Find all sets B € $(A) which have the property {2,3,5} C B.
Find an example of sets A and B such that |A| =4, |B| =5,and [AUB| =9.

Find an example of sets A and B such that |[A| =3, |B| =4, and [AU B| = 5.

Are there sets A and B such that |A| = [B|, |A U B| = 10, and |A N B| = 5? Explain.

In a regular deck of playing cards there are 26 red cards and 12 face cards. Explain,
in terms of sets, why there are only 32 cards which are either red or a face card.
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0.3 FuncTiONS

A function is a rule that assigns each input exactly one output. The set of all inputs for a
function is called the domain. The set of all allowable outputs is called the codomain. For
example, a function might assign each natural number to a natural number from 1 to 5.
In that case, the domain is the natural numbers and the codomain is the set of natural
numbers from 1 to 5. Now it could be that this particular function we are thinking about
assigns each even natural number to the number 2 and each odd natural number to the
number 1. In this case, not all of the codomain is actually used. We would say that the
set {1,2} is the range of the function. These are the elements in the codomain (allowable
outputs) which are actually outputs for some input.

The key thing that makes a rule actually a function is that there is only one output for
each input. That is, it is important that the rule be a good rule. What output do we assign
to the input 7? There can only be one answer for any particular function.

To specify the name of the function, as well as the domain and codomain, we write
f : X = Y. The function is called f, the domain is the set X, and the codomain is the set
Y. This, however, does not describe the rule. To do that, we say something like this:

The function f : X — Y is defined by f(x) = x + 3.

This function takes an input x and computes the output by squaring x and then adding
3. In this case, you better hope that X is a set of numbers and Y is a set of numbers which
can be 3 more than squares of numbers from X. It would not work for Y to be negative
numbers here. That would not be a valid function.

The description of the rule can vary greatly. We might just give a list of each output for
each input. You could also describe the function with a table or a graph or in words.

Example:
The following are all examples of functions:

1. f:Z — Z defined by f(n) = 3n. The domain and codomain are both the set
of integers. However, the range is only the set of integer multiples of 3.

2. ¢:41,2,3} — {a,b,c} defined by g(1) = ¢, g(2) = a and g(3) = a. The
domain is the set {1,2,3}, the codomain is the set {a,b, c} and the range is
the set {a, c}. Note that ¢(2) and g(3) are the same element of the codomain.
This is okay since each element in the domain still has only one output.

3. h:{1,2,3} - {1,2,3} defined as follows:
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The arrow diagram used to define the function above can be very helpful in visualizing
functions. We will often be working with functions on finite sets so this kind of picture
is often more useful than a traditional graph of a function. A graph of the function in
example 3 above would look like this:

It would be absolutely WRONG to connect the dots or try to fit them to some curve.
There are only three elements in the domain. A curve suggests that the domain contains
an entire interval of real numbers. Remember, we are not in calculus any more!

It is important to know how to determin if a rule is or is not a function. The arrow
diagrams can help.

Example:

Which of the following diagrams represent a function? Let X = {1,2,3,4} and
Y =A{a,b,cd}

f:X->Y g:X-Y h:X—->Y
1 2 3 4

1 2 3 4 1 2 3 4
a b ¢ 4 a b ¢ d
Solution: f is a function. So is g. There is no problem with an element of the
codomain not being the output for any input, and there is no problem with a from
the codomain being the output of both 2 and 3 from the domain.
However, h is not a function. In fact, it fails for two reasons. First, the element 1
from the domain has not been mapped to any element from the codomain. Second,
the element 2 from the domain has been mapped to more than one element from

the codomain (2 and c¢). Note that either one of these problems is enough to make
a rule not a function. for example, neither of the following mappings are functions:

W AN
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SuRrJECTIONS, INJECTIONS, AND BIJECTIONS

We now turn to investigating special properties functions might or might not possess.

In the examples above, you may have noticed that sometimes there are elements of the
codomain which are not in the range. When this sort of the thing does not happen, (that
is, when everything in the codomain is in the range) we say the function is onto or that the
function maps the domain onto the codomain. This terminology should make sense: the
function puts the domain (entirely) on top of the codomain. The fancy math term for an
onto function is a surjection, and we say that an onto function is a surjective function.

In pictures:

° ° ° ° ° ° ° °
O O O O O O
Surjective. Not surjective.

Example:
Which functions are surjective (i.e., onto)?

1. f:Z — Z defined by f(n) = 3n.
2. ¢:{1,2,3} = {a,b,c} defined by g(1) = ¢, g(2) = a and g(3) = a.
3. h:{1,2,3} - {1,2,3} defined as follows:

1 2 3
1 2 3

Solution:

1. f is not surjective. There are elements in the codomain which are not in the
range. For example, no n € Z gets mapped to the number 1 (the rule would
say that % would be sent to 1, but % is not in the domain). In fact, the range of
the function is 3Z (the integer multiples of 3), which is not equal to Z.

2. g is not surjective. There is no x € {1,2,3} (the domain) for which g(x) = b,
so b, which is in the codomain, is not in the range.

3. h is surjective. Every element of the codomain is also in the range. Nothing
in the codomain is missed.
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To be a function, a map cannot assign a single element of the domain to two or more
different elements of the codomain. However, we have seen that the reverse is permissible.
That is, a function might assign the same element of the codomain to two or more different
elements of the domain. When this does not occur (that is, when each element of the
codomain is assigned to at most one element of the domain) then we say the function
is one-to-one. Again, this terminology makes sense: we are sending at most one element
from the domain to one element from the codomain. One input to one output. The fancy
math term for a one-to-one function is an injection. We call one-to-one functions injective
functions.

In pictures:

° ° ° ° ° ° ° °
©) ©) ©) ©) ©) ©) ©) O O O
Injective. Not injective.

Example:
Which functions are injective (i.e., one-to-one)?

1. f:Z — Z defined by f(n) = 3n.
2. ¢:{1,2,3} = {a,b,c} defined by g(1) = ¢, g(2) = a and g(3) = a.
3. h:{1,2,3} - {1,2,3} defined as follows:

1 2 3
1 2 3

Solution:

1. f isinjective. Each element in the codomain is assigned to at most one element
from the domain. If x is a multiple of three, then only x/3 is mapped to x. If
x is not a multiple of 3, then there is no input corresponding to the output x.

2. g isnotinjective. Both inputs 2 and 3 are assigned the output a.

3. h is injective. Each output is only an output once.

From the examples above, it should be clear that there are functions which are surjective,
injective, both, or neither. In the case when a function is both one-to-one and onto (an
injection and surjection), we say the function is a bijection, or that the function is a bijective
function.
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INVERSE IMAGE

When discussing functions, we have notation for talking about an element of the domain
(say x) and its corresponding element in the codomain (we write f(x)). It would also be
nice to start with some element of the codomain (say y) and talk about which element or
elements (if any) from the domain get sent to it. We could write “those x in the domain
such that f(x) = y,” but this is a lot of writing. Here is some notation to make our lives
easier.

Suppose f : X — Y is a function. For y € Y (an element of the codomain), we write
f~X(y) to represent the set of all elements in the domain X which get sent to y. That is,
fl(y)={x € X: f(x) = y}. We say that f~!(y) is the complete inverse image of y under f.

WARNING: f~!(y) is not an inverse function!!!! Inverse functions only exist for bijec-
tions, but f~!(y) is defined for any function f. The point: f~'(y) is a set, not an element
of the domain.

Example:

Consider the function f :{1,2,3,4,5,6} — {a,b,c,d} givenby f(1) =a, f(2) =a,
f(3) =10, f(4) =c, f(5) = c and f(6) = c. Find the complete inverse image of each
element in the codomain.

Solution: Remember, we are looking for sets.
fHa)=1{1,2}
f71(b) = {3}

fc)=1{4,5,6}
fHd) =0.

Example:

Consider the function ¢ : Z — Z defined by g(n) = n? + 1. Find ¢7!(1), ¢71(2),
¢ 1(3) and ¢g71(10).

Solution: To find ¢~!(1), we need to find all integers 1 such that n? + 1 = 1. Clearly
only 0 works, so ¢71(1) = {0} (note that even though there is only one element, we
still write it as a set with one element in it).

To find g71(2), we need to find all n such that n2+1 = 2. Wesee ¢71(2) = {-1,1}.

If n2 + 1 = 3, then we are looking for an n such that n?> = 2. There are no such
integers so g71(3) = 0.

Finally, ¢71(10) = {-3,3} because ¢(-3) = 10 and ¢(3) = 10.
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Since f~!(y) is a set, it makes sense to ask for | f~!(y)|, the number of elements in the
domain which map to y.

Example:
Find a function f : {1,2,3,4,5} — N such that | f~1(7)| = 5.
Solution: There is only one such function. We need five elements of the domain

to map to the number 7 € N. Since there are only five elements in the domain, all
of them must map to 7. So f(1) =7, f(2) =7, f(3) =7, f(4) =7,and f(5) =7.

— Function Definitions

A function is a rule that assigns each element of a set, called the domain, to exactly
one element of a second set, called the codomain.

Notation: f : X — Y is our way of saying that the function is called f, the domain
is the set X, and the codomain is the set Y.

f(x) = y means the element x of the domain (input) is assigned to the element
y of the codomain. We say y is an output. Alternatively, we call y the image of x
under f.

The range is a subset of the codomain. It is the set of all elements which are
assigned to at least one element of the domain by the function. That is, the range
is the set of all outputs.

A function is injective (an injection or one-to-one) if every element of the codomain
is the output for at most one element from the domain.

A function is surjective (a surjection or onto) if every element of the codomain is
the output of at least one element of the domain.

A bijection is a function which is both an injection and surjection. In other words,
if every element of the codomain is the output of exactly one element of the
domain.

The complete inverse image of an element in the codomain, written f~!(y), is the
set of all elements in the domain which are assigned to y by the function.

EXERCISES

1. Write out all functions f : {1,2,3} — {a,b}. How many are there? How many are
injective? How many are surjective? How many are both?

2. Write out all functions f : {1,2} — {a,b,c}. How many are there? How many are
injective? How many are surjective? How many are both?
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3. Consider the function f : {1,2,3,4,5} — {1,2,3,4} given by the table below:

x [[1]2]3]4]5
fx)[3]2]4]1]2

(@) Is f injective? Explain.

(b) Is f surjective? Explain.

4. Consider the function f : {1,2,3,4} — {1, 2,3, 4} given by the graph below.

f(x) (a) Is f injective? Explain.
* * (b) Is f surjective? Explain.
3 ° °
2
1 ( J
1 2 3 4 X

5. For each function given below, determine whether or not the function is injective and
whether or not the function is surjective.
(@ f:N—>Ngivenby f(n)=n+4.
(b) f:Z — Zgivenby f(n)=n+4.
(c) f:Z — Zgivenby f(n)=>5n-8.
n/2 if n is even

(d) f:ZeZgivenbyf(n):{(n+1)/2 if 1 is odd.

6. Let A ={1,2,3,...,10}. Consider the function f : P(A) — N given by f(B) = |B|.
That is, f takes a subset of A as an input and outputs the cardinality of that set.
(@) Is f injective? Prove your answer.
(b) Is f surjective? Prove your answer.
(c) Find f71(1).
(d) Find f~1(0).
(e) Find f~1(12).
7. Let A={n € N:0 < n <999} be the set of all numbers with three or fewer digits.

Define the function f : A — Nby f(abc) = a + b + ¢, where a, b, and c are the digits
of the number in A. For example, f(253) =2 +5+3 = 10.
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10.

11.

12.

13.

14.

15.

(a) Find f~1(3).

(b) Find f~1(28).

(c) Is f injective. Explain.

(d) Is f surjective. Explain.

Let f : X — Y be some function. Suppose 3 € Y. What can you say about f~1(3) if
you know,

(@) f isinjective? Explain.

(b) f is surjective? Explain.

(c) f is bijective? Explain.
Find a set X and a function f : X — N so that f~}(0)U f~1(1) = X.
What can you deduce about the sets X and Y if you know. ..

(a) there is an injective function f : X — Y? Explain.
(b) there is a surjective function f : X — Y? Explain.

(c) there is a bijectitve function f : X — Y? Explain.
Suppose f : X — Y is a function. Which of the following are possible? Explain.

(a) f is injective but not surjective.

(b) f is surjective but not injective.

() |X|=[Y|and f is injective but not surjective.

(d) |X|=1Y|and f is surjective but not injective.

(e) |X|=1Y|, X and Y are finite, and f is injective but not surjective.
(f) |X]=[Y|, X and Y are finite, and f is surjective but not injective.

n+1 ifniseven

Consider the function f : Z — Z given by f(n) =
n—3 ifnisodd.

(a) Is f injective? Prove your answer.

(b) Is f surjective? Prove your answer.

At the end of the semester a teacher assigns letter grades to each of her students.
Is this a function? If so, what sets make up the domain and codomain, and is the
function injective, surjective, bijective, or neither?

In the game of Hearts, four players are each dealt 13 cards from a deck of 52. Is this
a function? If so, what sets make up the domain and codomain, and is the function
injective, surjective, bijective, or neither?

Suppose 7 players are playing 5-card stud. Each player initially receives 5 cards from
a deck of 52. Is this a function? If so, what sets make up the domain and codomain,
and is the function injective, surjective, bijective, or neither?



CHAPTER 1

COUNTING

One of the first things you learn in mathematics is how to count. Now we want to count

large collections of things quickly and precisely. For example:

* In a group of 10 people, if everyone shakes hands with everyone else exactly once,

how many handshakes took place?
¢ How many ways can you distribute 10 girl scout cookies to 7 boy scouts?
¢ How many anagrams are there of “anagram”?
¢ How many subsets of {1,2,3,...,10} have cardinality 7?

Before tackling these difficult questions, let’s look at the basics of counting.

1.1 ADDITIVE AND MULTIPLICATIVE PRINCIPLES

e Investigate!

have if:

(a) you will eat one dish, either an appetizer or an entrée?

(b) you are extra hungry and want to eat both an appetizer and an entrée?
for these methods.

12 face cards.

the second one is a face card?

\ @ Donot proceed until you have attempted the activity above

22

1. A restaurant offers 8 appetizers and 14 entrées. How many choices do you

2. Think about the methods you used to solve question 1. Write down the rules

3. Do your rules work? A standard deck of playing cards has 26 red cards and

(a) How many ways can you select a card which is either red or a face card?
(b) How many ways can you select a card which is both red and a face card?

(c) How many ways can you select two cards so that the first one is red and

\

/
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Consider this rather simple counting problem: at Red Dogs and Donuts, there are 14
varieties of donuts, and 16 types of hot dogs. If you want either a donut or a dog, how
many options do you have? This isn’t too hard, you just add 14 and 16. Will that always
work? What is important here?

Additive Principle

The additive principle states that if event A can occur in m ways, and event B can occur
in n disjoint ways, then the event “A or B” can occur in m + n ways.

It is important that the events be disjoint. For example, a standard deck of 52 cards
contains 26 red cards and 12 face cards. However, the number of ways to select a card
which is either red or a face card is not 26 + 12 = 38. This is because there are 6 cards which
are both red and face cards.

The additive principle works with more than two events. Say, in addition to your 14
choices for donuts and 16 for dogs, you would also consider eating one of 15 waffles? How
many choices do you have now? You would have 14 + 16 + 15 = 45 options.

Example:

How many two letter “words” start with either A or B? How many start with one
of the 5 vowels? (A word is just a strings of letters; it doesn’t have to be English, or
even pronounceable.)

Solution: First, how many two letter words start with A? We just need to select the
second letter, which can be accomplished in 26 ways. So there are 26 words starting
with A. There are also 26 words that start with B. To select a word which starts with
either A or B, we can pick the word from the first 26 or the second 26, for a total of
52 words. The additive principle is at work here.

Now what about all the two letter words starting with a vowel? There are 26
starting with A, another 26 starting with E, and so on. We will have 5 groups of
26. So we add 26 to itself 5 times. Of course it would be easier to just multiply
5-26. We are really using the additive principle again, just using multiplication as
a shortcut.

Example:

Suppose you are going for some fro-yo. You can pick one of 6 yogurt choices, and
one of 4 toppings. How many choices do you have?

Solution: Break your choices up into disjoint events: A are the choices with the
first topping, B the choices featuring the second topping, and so on. There are four
events; each can occur in 6 ways (one for each yogurt flavor). The events are disjoint,
so the total number of choicesis 6 + 6 + 6 + 6 = 24.
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Note that in both of the previous examples, when using the additive principle on a
bunch of events all the same size, it is quicker to multiply. This really is the same, and not
just because 6 + 6 + 6 + 6 = 4 - 6. We can first select the topping in 4 ways (that is, we first
select which of the disjoint events we will take). For each of those first 4 choices, we now
have 6 choices of yogurt. We have:

Multiplicative Principle

The multiplicative principle states that if event A can occur in m ways, and each possibility
for A allows for exactly n ways for event B, then the event “A and B” can occur in m - n
ways.

The multiplicative principle generalizes to more than two events as well.

Example:

How many license plates can you make out of three letters followed by three nu-
merical digits?

Solution: Here we have six events: the first letter, the second letter, the third letter,
the first digit, the second digit, and the third digit. The first three events can each
happen in 26 ways; the last three can each happen in 10 ways. So the total number
of license plates will be 26 - 26 - 26 - 10 - 10 - 10, using the multiplicative principle.

Does this make sense? Think about how we would pick a license plate. How
many choices we would have? First, we need to pick the first letter. There are 26
choices. Now for each of those, there are 26 choices for the second letter: 26 second
letters with first letter A, 26 second letters with first letter B, and so on. We add 26
to itself 26 times. Or quicker: there are 26 - 26 choices for the first two letters.

Now for each choice of the first two letters, we have 26 choices for the third
letter. That is, 26 third letters for the first two letters AA, 26 choices for the third
letter after starting AB, and so on. There are 26 - 26 of these 26 third letter choices,
for a total of (26 - 26) - 26 choices for the first three letters. And for each of these
26 - 26 - 26 choices of letters, we have a bunch of choices for the remaining digits.

In fact, there are going to be exactly 1000 choices for the numbers. We can see
this because there are 1000 three-digit numbers (000 through 999). This is 10 choices
for the first digit, 10 for the second, and 10 for the third. The multiplicative principle
says we multiply: 10 - 10 - 10 = 1000.

All together, there were 263 choices for the three letters, and 10> choices for the
numbers, so we have a total of 26% - 10° choices of license plates.

Careful: “and” doesn’t mean “times.” For example, how many playing cards are both
red and a face card? Not 26 - 12. The answer is 6, and we needed to know something about
cards to answer that question.

Another caution: how many ways can you select two cards, so that the first one is a red
card and the second one is a face card? This looks more like the multiplicative principle
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(you are counting two separate events) but the answer is not 26-12 here either. The problem
is that while there are 26 ways for the first card to be selected, it is not the case that for each
of those there are 12 ways to select the second card. If the first card was both red and a
face card, then there would be only 11 choices for the second card. The moral of this story
is that the multiplicative principle only works if the events are independent.!

CounTtING WITH SETS

Do you believe the additive and multiplicative principles? How would you convince
someone they are correct? This is surprisingly difficult. They seem so simple, so obvious.
But why do they work?

To make things clearer, and more mathematically rigorous, we will use sets. Do not
skip this section! It might seem like we are just trying to give a proof of these principles,
but we are doing a lot more. If we understand the additive and multiplicative principles
rigorously, we will be better at applying them, and knowing when and when not to apply
them at all.

We will look at the additive and multiplicative principles in a slightly different way.
Instead of thinking about event A and event B, we want to think of a set A and a set B. The
sets will contain all the different ways the event can happen. (It will be helpful to be able
to switch back and forth between these two models when checking that we have counted
correctly.) Here’s what we mean:

Example:
Suppose you own 9 shirts and 5 pairs of pants.

1. How many outfits can you make?

2. If today is half-naked-day, and you will wear only a shirt or only a pair of
pants, how many choices do you have?

Solution: By now you should agree that the answer to the first questionis 9-5 = 45
and the answer to the second question is 9 + 5 = 14. These are the multiplicative
and additive principles. There are two events: picking a shirt and picking a pair of
pants. The first event can happen in 9 ways and the second event can happen in 5
ways. To get both a shirt and a pair of pants, you multiply. To get just one article of
clothing, you add.

Now look at this using sets. There are two sets, call them S and P. The set S
contains all 9 shirts so |S| = 9 while |P| = 5, since there are 5 elements in the set
P (namely your 5 pairs of pants). What are we asking in terms of these sets? Well

1To solve this problem, you could break it into two cases. First, count how many ways there are to select
the two cards when the first card is a red non-face card. Second, count how many ways when the first card is
a red face card. Doing so makes the events in each separate case independent, so the multiplicative principle
can be applied.
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in question 2, we really want |S U P|, the number of elements in the union of shirts
and pants. This is just |S| + |P| (since there is no overlap; |S N P| = 0). Question
1 is slightly more complicated. Your first guess might be to find |S N P|, but this
is not right (there is nothing in the intersection). We are not asking for how many
clothing items are both a shirt and a pair of pants. Instead, we want one of each.
We could think of this as asking how many pairs (x, y) there are, where x is a shirt
and vy is a pair of pants. As we will soon verify, this number is |S| - |P|.

From this example we can see right away how to rephrase our additive principle in
terms of sets:

Additive Principle (with sets)

Given two sets A and B, if A N B = ( (that is, if there is no element in common to both
A and B), then
|AUB|=|A|+|B].

This hardly needs a proof. To find A U B, you take everything in A and throw in
everything in B. Since there is no element in both sets already, you will have |A| things and
add |B| new things to it. This is what adding does! Of course, we can easily extend this to
any number of disjoint sets.

From the example above, we see that in order to investigate the multiplicative principle
carefully, we need to consider ordered pairs. We should define this carefully:

Cartesian Product

Given sets A and B, we can form the set A X B = {(x,y) : x € A A y € B} to be the set
of all ordered pairs (x, y) where x is an element of A and y is an element of B. We call
A X B the Cartesian product of A and B.

The question is, what is |A x B|? To figure this out, write out A X B.

Let A = {ai,a»,4a3,...,a,} and B = {b1,bo,b3,...,b,} (so |A| = m and |B| = n). The
set A X B contains all pairs with the first half of the pair being a; for some i and the second
being b; for some j. In other words:

A X B = {(all bl)/ (all bZ)/ (all b3)/ .. (all bi’l)/
(a2/ bl)/ (a2/ bZ)/ (a2/ b3)/ R4 (a2/ bn)/
(a3/ b])/ (Elg, bZ)/ (a3/ b3)/ ey (a3/ bn)/

(aml bl)/ (a‘ﬂh bZ)/ (aﬂh b3), crcy (aTH/ bn)}

Notice what we have done here: we made m rows of n pairs, for a total of m - n pairs.
Each row above is really {a;} X B for some a; € A. That is, we fixed the A-element.
Broken up this way, we have

AxB=({a1} xB)U ({az2} x B)U ({az} X B)U---U({au} X B).
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So A x B is really the union of m disjoint sets. Each of those sets has 1 elements in them.
The total (using the additive principle)isn + n+n+---+n=m-n.
To summarize:

Multiplicative Principle (with sets)
TGiven two sets A and B, we have |A X B| = |A] - |B|.

Again, we can easily extend this to any number of sets.

PrincipLE OF INcLUSION/EXCLUSION

While we are thinking about sets, consider what happens to the additive principle when
the sets are NOT disjoint. Suppose we want to find |A U B| and know that |A| = 10 and
|B| = 8. This is not enough information though. We do not know how many of the 8
elements in B are also elements of A. However, if we also know that |A N B| = 6, then we
can say exactly how many elements are in A, and, of those, how many are in B and how
many are not (6 of the 10 elements are in B, so 4 are in A but not in B). We could fill in a
Venn diagram as follows:

This says there are 6 elements in A N B, 4 elements in A \ B and 2 elements in B \ A.
Now these three sets are disjoint, so we can use the additive principle to find the number of
elementsin AUB. Itis6+4 +2 =12.

This will always work, but drawing a Venn diagram is more than we need to do. In
fact, it would be nice to relate this problem to the case where A and B are disjoint. Is there
one rule we can make that works in either case?

Here is another way to get the answer to the problem above. Start by just adding
|A| + |B|. This is 10 + 8 = 18, which would be the answer if |A N B| = 0. We see that we are
off by exactly 6, which just so happens to be |[A N B|. So perhaps we guess,

JAUB| = |A| +|B| - |A N BI.

This works for this one example. Will it always work? Think about what we are doing
here. We want to know how many things are either in A or B (or both). We can throw in
everything in A, and everything in B. This would give |A| + |B| many elements. But of
course when you actually take the union, you do not repeat elements that are in both. So far
we have counted every element in A N B exactly twice: once when we put in the elements
from A and once when we included the elements from B. We correct by subtracting out
the number of elements we have counted twice. So we added them in twice, subtracted
once, leaving them counted only one time.
In other words, we have:
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Cardinality of a union (2 sets)

For any finite sets A and B,

|IAUB| = |A| +|B| - |A N BI.

We can do something similar with three sets.

Example:

An examination in three subjects, Algebra, Biology, and Chemistry, was taken by
41 students. The following table shows how many students failed in each single
subject and in their various combinations:

Subject: | A | B| C | AB | AC | BC | ABC
Failed: |12 |5 | 8 | 2 6 3 1

How many students failed at least one subject?

Solution:

The answer is not 37, even though the sum of the numbers above is 37. For
example, while 12 students failed Algebra, 2 of those students also failed Biology, 6
also failed Chemestry, and 1 of those failed all three subjects. In fact, that 1 student
who failed all three subjects is counted a total of 7 times in the total 37. To clarify
things, let us think of the students who failed Algebra as the elements of the set A,
and similarly for sets B and C. The one student who failed all three subjects is the
lone element of the set AN B N C. Thus, in Venn diagrams:

A B

C

Now let’s fill in the other intersections. We know A N B contains 2 elements, but
1 element has already been counted. So we should put a 1 in the region where A
and B intersect (but C does not). Similarly, we calculate the cardinality of (ANC)\B,
and (BN C)\ A:
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Next, we determine the numbers which should go in the remaining regions,
including outside of all three circles. This last number is the number of students
who did not fail any subject:

We found 5 goes in the “A only” region because the entire circle for A needed
to have a total of 12, and 7 were already accounted for.

Thus the number of students who passed all three classes is 26. The number
who failed at least one class is 15.

Note that we can also answer other questions. For example, now many students
failed just Chemistry? None. How many passed Biology but failed both Algebra
and Chemistry? 5.

Could we have solved the problem above in an algebraic way? While the additive
principle generalizes to any number of sets, when we add a third set here, we must be
careful. With two sets, we needed to know the cardinalities of A, B, and A N B in order to
find the cardinality of A U B. With three sets we need more information. There are more
ways the sets can combine. Not surprisingly then, the formula for cardinality of the union
of three non-disjoint sets is more complicated:

Cardinality of a union (3 sets)

For any finite sets A, B, and C,

JAUBUC| = |A| +|B| +|C|-|ANB|-]ANC|-|BNC|+|ANBNC|

To determine how many elements are in at least one of A, B, or C we add up all the
elements in each of those sets. However, when we do that, any element in both A and B
is counted twice. Also, each element in both A and C is counted twice, as are elements in
B and C, so we take each of those out of our sum once. But now what about the elements
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which are in A N B N C (in all three sets)? We added them in three times, but also removed
them three times. They have not yet been counted. Thus we add those elements back in at
the end.

Returning to our example above, we have |A| = 12, |[B| = 5, |C| = 8. We also have
JANB|=2,]ANC|=6,|BNC|=3,and |A N BN C| =1. Therefore:

JAUBUC|=12+5+8-2-6-3+1=15

This is what we got when we solved the problem using Venn diagrams.

This process of adding in, then taking out, then adding back in, and so on is called
the Principle of Inclusion/Exclusion, or simply PIE. We will return to this counting technique
later to solve for more complicated problems (involving more than 3 sets).

EXERCISES

1. Your wardrobe consists of 5 shirts, 3 pairs of pants, and 17 bow ties. How many
different outfits can you make?

2. For your college interview, you must wear a tie. You own 3 regular (boring) ties and
5 (cool) bow ties. How many choices do you have for your neck-wear?

3. Yourealize that the interview is for clown college, so you should probably wear both
a regular tie and a bow tie. How many choices do you have now?

4. For the rest of your outfit, you have 5 shirts, 4 skirts, 3 pants, and 7 dresses. You want
to select either a shirt to wear with a skirt or pants, or just a dress. How many outfits
do you have to choose from?

5. Your Blu-ray collection consists of 9 comedies and 7 horror movies. Give an example
of a question for which the answer is:

(a) 16.
(b) 63.

6. If |A| = 10 and |B| = 15, what is the largest possible value for |A N B|? What is the
smallest? What are the possible values for [A U B|?

7. If|A| =8 and |B| =5, whatis |AUB|+|ANB|?

8. A group of college students were asked about their TV watching habits. Of those
surveyed, 28 students watch The Walking Dead, 19 watch The Blacklist, and 24 watch
Game of Thrones. Additionally, 16 watch The Walking Dead and The Blacklist, 14 watch
The Walking Dead and Game of Thrones, and 10 watch The Blacklist and Game of Thrones.
There are 8 students who watch all three shows. How many students surveyed
watched at least one of the shows?

9. Find |[(A U C) \ B| provided |A| = 50, |B| = 45, |C| =40, |[ANB| =20, |ANC| =15,
IBNC|=23,and |[ANBNC|=12.
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10. Using the same data as the previous question, describe a set with cardinality 26.

11. Consider all 5 letter “words” made from the letters a through /. (Recall, words are
just strings of letters, not necessarily actual Elglish words.)
(a) How many of these words are there total?
(b) How many of these words contain no repeated letters?
(c) How many of these words (repetitions allowed) start with the sub-word “aha”?

(d) How many of these words (repetitions allowed) either start with “aha” or end
with “bah” or both?

(e) How many of the words containing no repeats also do not contain the sub-word
“bad” (in consecutive letters)?

1.2 BinoMIAL COEFFICIENTS

i !
e Investigate! ™

In Chess, a rook can move only in straight lines (not diagonally). Fill in each square
of the chess board below with the number of different shortest paths the rook, in the
upper left corner, can take to get to that square. For example, one square is already
filled in. There are six different paths from the rook to the square: DDRR (down
down right right), DRDR, DRRD, RDDR, RDRD and RRDD.

/%///

o
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Here are some apparently different discrete objects we can count: subsets, bit strings,
lattice paths, and binomial coefficients. We will give an example of each type of counting
problem (and say what these things even are). As we will see, these counting problems are
surprisingly similar.

Do not proceed until you have attempted the activity above
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SUBSETS

Subsets should be familiar, otherwise read over Section 0.2 again. Suppose we look at the
set A ={1,2,3,4,5}. How many subsets of A contain exactly 3 elements?

First, a simpler question. How many subsets of A are there total? In other words, what
is |P(A)| (the cardinality of the power set of A)? Think about how we would build a subset.
We need to decide, for each of the elements of A, whether or not to include the element
in our subset. So we need to decide “yes” or “no” for the element 1. And for each choice
we make, we need to decide “yes” or “no” for the element 2. And so on. For each of
the 5 elements, we have 2 choices. Therefore the number of subsets is simply 25 (by the
multiplicative principle).

Of those 32 subsets, how many have 3 elements? This is not obvious. Note that we
cannot just use the multiplicative principle. Maybe we want to say we have 2 choices for
the first element, 2 choices for the second, 2 choices for the third, and then only 1 choice for
the other two. But what if we said “no” to one of the first three elements? Then we would
have two choices for the 4th element. What a mess!

Another (bad) idea: we need to pick three elements to be in our subset. There are 5
elements to choose from. So there are 5 choices for the first element, and for each of those 4
choices for the second, and then 3 for the third (last) element. The multiplicative principle
would say then that there are a total of 5-4 - 3 = 60 ways to select the 3 element subset.
But this cannot be correct (60 > 32 for one thing). One of the outcomes we would get from
these choices would be the set {3,2,5}, by choosing the element 3 first, then the element
2, then the element 5. Another outcome would be {5, 2,3} by choosing the element 5 first,
then the element 2, then the element 3. But these are the same set! We can correct this by
dividing the supposed 60 outcomes by the number of different outcomes which count as
the same for each three elements. There happen to be 6 of these. So we expect there to be
10 3-element subsets of A.

Is this right? Well, we could list out all 10 of them, being very systematic in doing so, to
make sure we don’t miss any or list any twice. Or we could try to count how many subsets
of A don’t have 3 elements in them. How many have no elements? Just 1 (the empty set).
How many have 5? Again, just 1. These are the cases in which we say “no” to all elements,
or “yes” to all elements. Okay, what about the subsets which contain a single element?
There are 5 of these. We must say “yes” to exactly one element, and there are 5 to choose
from. This is also the number of subsets containing 4 elements. Those are the ones for
which we must say “no” to exactly one element.

So far we have counted 12 of the 32 subsets. We have not yet counted the subsets with
cardinality 2 and with cardinality 3. There are a total of 20 subsets left to split up between
these two groups. But the number of each must be the same! If we say “yes” to exactly two
elements, that can be accomplished in exactly the same number of ways as the number of
ways we can say “no” to exactly two elements. So the number of 2-element subsets is equal
to the number of 3-element subsets. Together there are 20 of these subsets, so 10 each.

2|3 [4]5
|10[ 10|51

Number of elements: ‘ 0
1

1
Number of subsets: ‘ 5
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BiT STRINGS

“Bit” is short for “binary digit,” so a bit string is a string of binary digits. The binary digits
are simply the numbers 0 and 1. All of the following are bit strings:

1001 0 1111 1010101010

The number of bits (0’s or 1’s) in the string is the length of the string; the strings above have
lengths 4, 1, 4, and 10 respectively. We also can ask how many of the bits are 1’s. The
number of 1’s in a bit string is the weight of the string; the weights of the above strings are
2,0, 4, and 5 respectively.

— Bit Strings

¢ A n-bit string is a bit string of length n. That s, it is a string containing n symbols,
each of which is a bit, either 0 or 1.

¢ The weight of a bit string is the number of 1’s in it.
e B" is the set of all n-bit strings.

* B/ is the set of all n-bit strings of weight k.

For example, the elements of the set Bg are the bit strings 011, 101, and 110. Those are
the only strings containing three bits exactly two of which are 1’s.

The counting questions: How many bit strings have length 5? How many of those have
weight 3? In other words, we are asking for the cardinalities |B°| and |Bg|.

To find the number of 5-bit strings is straight forward. We have 5 bits, and each can
either be a 0 or a 1. So there are 2 choices for the first bit, 2 choices for the second, and so
on. By the multiplicative principle, there are 2 -2 -2 - 2 - 2 = 25 = 32 such strings.

Finding the number of 5-bit strings of weight 3 is harder. Think about how such a string
could start. The first bit must be either a 0 or a 1. In the first case (the string starts with a
0), we must then decide on four more bits. To have a total of three 1’s, among those four
remaining bits there must be three 1’s. In other words, we must include all 4-bit strings of
weight 3. In the second case (the string starts with a 1), we still have four bits to choose,
but now only two of them can be 1’s, so we should look at all the 4-bit strings of weight 2.
In other words:

B3| = B3| + [B3].

This is an example of a recurrence relation. We represented one instance of our counting
problem in terms of two simpler instances of the problem. It holds because the strings in
Bg all have the form 1B; (that is, a 1 followed by a string from B3) or 0Bj. If only we knew
the cardinalities of B} and B‘;. Repeating the same reasoning,

IB5| = [BJ| +|B3| and |B3| = B3|+ B3]

We can keep going down, but this should be good enough. Both B‘;’ and Bg contain 3 bit
strings: we must pick one of the three bits to be a 1 (three ways to do that) or one of the
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three bits to be a 0 (three ways to do that). Also, Bg contains just one string: 111. Thus
|B§| =6and |B§| = 4, which puts Bg at a total of 10 strings.

But wait — 32 and 10 were the answers to the counting questions about subsets. Coin-
cidence? Not at all. Each bit string can be thought of as a code for a subset. For the set
A =1{1,2,3,4,5}, we would use 5-bit strings, one bit for each element of A. Each bit in the
string is a 0 if its corresponding element of A is not in the subset, and a 1 if the element of
A is in the subset. Remember, deciding the subset amounted to a sequence of five yes/no
votes for the elements of A. Instead of yes, we put a 1; instead of no, we put a 0.

For example, the bit string 11001 represents the subset {1,2,5} since the first, second
and fifth bits are 1’s. The subset {3,5} would be coded by the string 00101. What we really
have here is a bijection from P (A) to B®.

Now for a subset to contain exactly three elements, the corresponding bit string must
contain exactly three 1’s. In other words, the weight must be 3. Thus counting the number
of 3-element subsets of A is the same as counting the number 5-bit strings of weight 3.

LarTIiCcE PATHS

The integer lattice is the set of all points in the Cartesian plane for which both the x and y
coordinates are integers. If you like to draw graphs on graph paper, the lattice is the set of
all the intersections of the grid lines.

A lattice path is one of the shortest possible paths connecting two points on the lattice,
moving only horizontally and vertically. For example, here are three possible lattice paths
from the points (0, 0) to (3, 2):

(3.2) | (32) (3,2)

0,0) ' 0,0) 0,0)

Notice to ensure the path is the shortest possible, each move must be either to the right
or up. Additionally, in this case, each path has length 5 as no matter what order we take
them in, we must take three steps right and two steps up.

The counting question: how many lattice paths are there between (0,0) and (3,2)? We
could try to draw all of these, or instead of drawing them, maybe just list which direction
we travel on each of the 5 steps. One path might be RRUUR, or maybe UURRR, or perhaps
RURRU (those correspond to the three paths drawn above). So how many such strings of
R’s and U’s are there?

Notice that each of these strings must contain 5 symbols. Exactly 3 of them must be R’s
(since our destination is 3 units to the right). This seems awfully familiar. In fact, what if
we used 1’s instead of R’s and 0’s instead of U’s? Then we would just have 5-bit strings of
weight 3. There are 10 of those, so there are 10 lattice paths from (0,0) to (3,2).
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The correspondence between bit strings and lattice paths does not stop there. Here is
another way to count lattice paths. Consider the lattice shown below:

L L] L] A L] (3,2)
L ] L] L] L] B

0,0)

Any lattice path from (0,0) to (3,2) must pass through exactly one of A and B. The point
A is 4 steps away from (0,0) and two of them are right. The number of lattice paths to A is
the same as the number of 4-bit strings of weight 2, namely 6. The point B is 4 steps away
from (0,0), but now 3 of them are right. So the number of paths to point B is the same as
the number of 4-bit strings of weight 3, namely 4. So the total number of paths to (3,2) is
just 6 + 4. This is the same way we calculated the number of 5-bit strings of weight 3. The
point: the exact same recurrence relation exists for bit strings and for lattice paths.

BinomiAL COEFFICIENTS

Binomial coefficients are the coefficients in the expanded version of a binomial, such as
(x+y)°. What happens when we multiply such a binomial out? We will expand (x +y)" for
various values of n. Each of these are done by multiplying everything out (i.e., FOIL-ing)
and then collecting like terms.

(x+y)l=x+y
(x +y)* = x* +2xy + y?
(x+ ) = x> +3x%y +3xy* + y°
(x + y)* = x* + 423y + 6x%y% + dxy® + yt

In fact, there is a quicker way to expand the above binomials. For example, consider
the next one, (x + y)°. What we are really doing is multiplying out,

(x +y)(x + y)(x + y)(x + y)(x +y).

In the expansion, there will be only one x° term and one y° term. This is because to get an
x>, we need to use the x term in each of the copies of the binomial (x + i), and similarly for
y°. What about x*y? To get terms like this, we need to use four x’s and one y, so we need
exactly one of the five binomials to contribute a y. There are 5 choices for this, so there are
5 ways to get x*y, so the coefficient of x*y is 5. This is also the coefficient for xy* for the
same (but opposite) reason: there are 5 ways to pick which of the 5 binomials contribute
the single x. So far we have

(x+y)° =2 +5xty + 2 3y? + 2 x%y3 + 5xyt + 0
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We still need the coefficients of x3y? and x2y°. In both cases, we need to pick exactly 3 of
the 5 binomials to contribute one variable, the other two to contribute the other. Wait. This
sounds familiar. We have 5 things, each can be one of two things, and we need a total of 3
of one of them. That’s just like taking 5 bits and making sure exactly 3 of them are 1’s. So
the coefficient of x3y? (and also x2y>) will be exactly the same as the number of bit strings
of length 5 and weight 3, which we found earlier to be 10. So we have:

(x +y)° = x° + 5xty + 10x3y? + 10x%y> + 5xy* + °.

These numbers we keep seeing over and over again. They are the number of subsets of a
particular size, the number of bit strings of a particular weight, the number of lattice paths,
and the coefficients of these binomial products. We will call them binomial coefficients. We
even have a special symbol for them: (}).

— Binomial Coefficients
For each integer n > 0 and integer k with 0 < k < n there is a number

f

read “n choose k.” We have:

[ ]
/N /N /N /N

The last bullet point is usually taken as the definition of (}). Out of n objects we must
choose k of them, so there are n choose k ways of doing this. Each of our counting problems
above can be viewed in this way:

e How many subsets of {1,2,3,4,5} contain exactly 3 elements? We must choose 3 of
the 5 elements to be in our subset. There are (g) ways to do this, so there are (g) such

subsets.

¢ How many bit strings have length 5 and weight 3? We must choose 3 of the 5 bits to

be 1’s. There are (g) ways to do this, so there are (g) such bit strings.

¢ How many lattice paths are there from (0,0) to (3,2)? We must choose 3 of the 5 steps

to be towards the right. There are (g) ways to do this, so there are (g) such lattice

paths.
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* What is the coefficient of x*>y? in the expansion of (x + y)°? We must choose 3 of
the 5 copies of the binomial to contribute an x. There are (g) ways to do this, so the
coefficient is (g)

It should be clear that in each case above, we have the right answer. All we had to do is
phrase the question correctly and it became obvious that (g) is correct. However, this does
not tell us that the answer is in fact 10 in each case. We will eventually find a formula for
(Z), but for now, look back at how we arrived at the answer 10 in our counting problems
above. It all came down to bit strings, and we have a recurrence relation for bit strings:

-1 -1
Byl =B |+ B

Remember, this is because we can start the bit string with either a 1 or a 0. In both cases,
we have n — 1 more bits to pick. The strings starting with 1 must contain k — 1 more 1’s,
while the strings starting with 0 still need k more 1’s.

Since |BZ| = (Z), the same recurrence relation holds for binomial coefficients:

==+ ()

PascArl’s TRIANGLE

Recurrence relation for (})

Let’s arrange the binomial coefficients (}) into a triangle like follows:

4 4 4 4 4
A A I A

This can continue as far down as we like. The recurrence relation for (}) tells us that
each entry in the triangle is the sum of the two entries above it. The entries on the sides of
the triangle are always 1. This is because ({;) = 1 for all n since there is only one way to pick
0 of n objects and (Z) = 1 since there is one way to select all n out of n objects. Using the
recurrence relation, and the fact that the sides of the triangle are 1’s, we can easily replace
all the entries above with the correct values of (}). Doing so gives us Pascal’s triangle.

We can use Pascal’s triangle to calculate binomial coefficients. For example, using the
triangle on the next page, we can find (162) =924.



Pascarl's TRIANGLE
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EXERCISES
. LetS=1{1,2,3,4,5,6}

(a) How many subsets are there total?
(b) How many subsets have {2, 3,5} as a subset?
(c) How many subsets contain at least one odd number?

(d) How many subsets contain exactly one even number?

. LetS ={1,2,3,4,5,6}

(a) How many subsets are there of cardinality 4?

(b) How many subsets of cardinality 4 have {2,3,5} as a subset?

(c) How many subsets of cardinality 4 contain at least one odd number?

(d) How many subsets of cardinality 4 contain exactly one even number?

. Youbreak your piggy-bank to discover lots of pennies and nickels. You startarranging
these in rows of 6 coins.

(@) You find yourself making rows containing an equal number of pennies and
nickels. For fun, you decide to lay out every possible such row. How many
coins will you need?

(b) How many coins would you need to make all possible rows of 6 coins (not
necessarily with equal number of pennies and nickels)?

. How many 10-bit strings contain 6 or more 1’s?

. How many subsets of {0, 1, ...,9} have cardinality 6 or more?

. What is the coefficient of x'2 in (x + 2)1°?

. What is the coefficient of x° in the expansion of (x + 1)14 + x3(x +2)1°?
. How many shortest lattice paths start at (3,3) and

(a) end at (10,10)?

(b) end at (10,10) and pass through (5,7)?

(c) end at (10,10) and avoid (5,7)?

. Suppose you are ordering a large pizza from D.P. Dough. You want 3 distinct toppings,
chosen from their list of 11 vegetarian toppings.

(a) How many choices do you have for your pizza?

(b) How many choices do you have for your pizza if you refuse to have pineapple
as one of your toppings?
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(c) How many choices do you have for your pizza if you insist on having pineapple
as one of your toppings?

(d) How do the three questions above relate to each other?

10. Explain why the coefficient of x°y® the same as the coefficient of x°y° in the expansion
of (x + y)??

1.3 CoMBINATIONS AND PERMUTATIONS

e Investigate! ~

You have a bunch of chips which come in five different colors: red, blue, green,
purple and yellow.

1. How many different two-chip stacks can you make if the bottom chip must be
red or blue? Explain your answer using both the additive and multiplicative
principles.

2. How many different three-chip stacks can you make if the bottom chip must
be red or blue and the top chip must be green, purple or yellow? How does
this problem relate to the previous one?

3. How many different three-chip stacks are there in which no color is repeated
(but otherwise any colors could be on the top or bottom)? What about four-chip
stacks?

4. Suppose you wanted to take three different colored chips and put them in your
pocket. How many different choices do you have? What if you wanted four
different colored chips? How do these problems relate to the previous one?

o -

@ Do not proceed until you have attempted the activity above

N

A permutation is a (possible) rearrangement of objects. For example, there are 6 permu-
tations of the letters a, b, c:

abc, acb, bac, bca, cab, cba.

We know that we have them all listed above — there are 3 choices for which letter we put
tirst, then 2 choices for which letter comes next, which leaves only 1 choice for the last letter.
The multiplicative principle says we multiply 3 -2 - 1.

Example:
How many permutations are there of the letters a, b, ¢, d, ¢, f?
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Solution: We do NOT want to try to list all of these out. However, if we did, we
would need to pick a letter to write down first. There are 6 choices for that letter. For
each choice of first letter, there are 5 choices for the second letter (we cannot repeat
the first letter), and for each of those, there are 4 choices for the third, 3 choices for
the fourth, 2 choices for the fifth and finally only 1 choice for the last letter. So there
are6-5-4-3-2-1 =720 permutations of the 6 letters. We could also write this as 6!
(read, 6 factorial; in general n! is the product of all natural numbers between 1 and
n.).

Sometimes we do not want to permute all of the letters.

Example:

How many 4 letter “words” can you make from the letters a through f, with no
repeated letters?

Solution: This is just like the problem of permuting 4 letters, only now we have
more choices for each letter. For the first letter, there are 6 choices. For each of
those, there are 5 choices for the second letter. Then there are 4 choices for the third
letter, and 3 choices for the last letter. The total number of wordsis6-5-4 -3 = 360.
This is not 6! because we never multiplied by 2 and 1. We could start with 6! and
then cancel the 2 and 1, and thus write %

In general, we can ask how many permutations exist of k objects choosing those objects
from a larger collection of n objects. (In the example above, k = 4, and n = 6.) We write this
number P(n, k). From the example above, we see that to compute P(n, k) we must apply
the multiplicative principle to k numbers, starting with n and counting backwards. So for
example

P(10,4)=10-9-8-7.

Notice again that P(10, 4) starts out looking like 10!, but we stop after 7. So

10-9-8-7-6-5-4-3-2-1 10!

P(10,4) = 6-5-4-3-2-1 o

Careful: the factorial in the denominator is not 4! but rather (10 — 4)!.

Permutations
P(n, k) is the number of permutations of k out of n objects.

n!

P(Tl,k) = m

Note that when n = k, we have P(n,n) = (nf—;), = n! (since we define 0! to be 1). This
makes sense — we already know n! gives the number of permutations of all n objects.

Here is another way to find the number of permutations of k out of n objects: first
select which k objects will be in the permutation, then count how many ways there are to
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arrange them. Once you have selected the k objects, we know there are k! ways to arrange
(permute) them. But how do you select k objects from the n? You have n objects, and you
need to choose k of them. You can do that in (}) ways. This gives us another formula for
P(n,k):

P(n, k) = (’Z) kL.

Now since we have a closed formula for P(n, k) already, we can substitute that in:

n! n
T (k) e

If we divide both sides by k! we get a closed formula for (7).

Closed formula for (})

AN n!
(k) - (n —k)'k!”

We say P(n, k) counts permutations, and (}) counts combinations. The formulas for each
are very similar, there is just an extra k! in the denominator of (Z) That extra k! accounts
for the fact that (}) does not distinguish between the different orders that the k objects can
appear in. We are just selecting (or choosing) the k objects, not arranging them. Perhaps
“combination” is a misleading label. We don’t mean it like a combination lock (where the
order would definitely matter). Perhaps a better metaphor is a combination of flavors —
you just need to decide which flavors to combine, not the order in which to combine them.

To further illustrate the connection between combinations and permutations, we close
with an example.

Example:

You decide to have a dinner party. Even though you are incredibly popular and
have 14 different friends, you only have enough chairs to invite 6 of them.

1. How many choices do you have for which 6 friends to invite?

2. What if you need to decide not only which friends to invite but also in which
order to invite them in? How many choices do you have then?

Solution:

1. You must simply choose 6 friends from a group of 14. This can be done in (13)
ways. We can find this number either by using Pascal’s triangle or the closed
formula % = 3003.

2. Here you must count all the ways you can permute 6 friends chosen from a
group of 14. So the answer is P(14, 6), which can be calculated as % = 2192190.
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How are these numbers related? Notice that P(14, 6) is much larger than (). This
makes sense. (13) picks 6 friends, but P(14, 6) arranges the 6 friends as well as picks
them. In fact, we can say exactly how much larger P(14, 6) is. In both counting
problems we choose 6 out of 14 friends. For the first one, we stop there, at 3003
ways. But for the second counting problem, each of those 3003 choices of 6 friends
can be arranged in exactly 6! ways. So now we have 3003 - 6! choices and that is
exactly 2192190.

Alternatively, look at the first problem another way. We want to select 6 out of
14 friends, but we do not care about the order they are selected in. To select 6 out
of 14 friends, we might try this:

14-13-12-11-10-9.

This is a reasonable guess, since we have 14 choices for the first guest, then 13
for the second, and so on. But the guess is wrong (in fact, that product is exactly
2192190 = P(14, 6)). It distinguishes between the different orders in which we could
invite the guests. To correct for this, we could divide by the number of different
arrangements of the 6 guests (so that all of these would count as just one outcome).
There are precisely 6! ways to arrange 6 guests, so the correct answer to the first

question is
14-13-12-11-10-9

6!
Note that another way to write this is
14!
8!-6!
which is what we had originally.
EXERCISES

1. A pizza parlor offers 10 toppings.

(a) How many 3-topping pizzas could they put on their menu? Assume double
toppings are not allowed.

(b) How many total pizzas are possible, with between zero and ten toppings (but
not double toppings) allowed?

(c) The pizza parlor will list the 10 toppings in two equal-sized columns on their
menu. How many ways can they arrange the toppings in the left column?

2. A combination lock consists of a dial with 40 numbers on it. To open the lock, you
turn the dial to the right until you reach a first number, then to the left until you get
to second number, then to the right again to the third number. The numbers must be
distinct. How many different combinations are possible?

3. Using the digits 2 through 8, find the number of different 5-digit numbers such that:
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10.

(a) Digits can be used more than once.
(b) Digits cannot be repeated, but can come in any order.
(c) Digits cannot be repeated and must be written in increasing order.

(d) Which of the above counting questions is a combination and which is a permu-
tation? Explain why this makes sense.

How many quadrilaterals can you draw using the dots below as vertices (corners)?

How many of the quadrilaterals possible in the previous problem are:

(a) Squares?

(b) Rectangles?
(c) Parallelograms?
(d) Trapezoids??

(e) Trapezoids that are not parallelograms?

An anagram of a word is just a rearrangement of its letters. How many different
anagrams of “uncopyrightable” are there? (This happens to be the longest common
English word without any repeated letters.)

How many anagrams are there of the word “assesses” that start with the letter “a”?
How many anagrams are there of “anagram”?

On a business retreat, your company of 20 businessmen and businesswomen go

golfing.

(@) You need to divide up into foursomes (groups of 4 people): a first foursome, a
second foursome, and so on. How many ways can you do this?

(b) After all your hard work, you realize that in fact, you want each foursome to

include one of the five Board members. How many ways can you do this?

How many different seating arrangements are possible for King Arthur and his 9
knights around their round table?

2Here, as in calculus, a trapezoid is defined as a quadrilateral with at least one pair of parallel sides. In
particular, parallelograms are trapezoids.
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1.4 CoMBINATORIAL PROOFS

i !
e Investigate! ™

1. The Stanley Cup is decided in a best of 7 tournament between two teams. In
how many ways can your team win? Let’s answer this question two ways:

(a) How many of the 7 games does your team need to win? How many ways
can this happen?

(b) What if the tournament goes all 7 games? So you win the last game. How
many ways can the first 6 games go down?

(c) What if the tournament goes just 6 games? How many ways can this
happen? What about 5 games? 4 games?

(d) What are the two different ways to compute the number of ways your
team can win? Write down an equation involving binary coefficients
(that is, (',Z)’s). What pattern in Pascal’s triangle is this an example of?

2. Generalize. What if the rules changed and you played a best of 9 tournament
(5 wins required)? What if you played an n game tournament with k wins
required to be named champion?

o

Do not proceed until you have attempted the activity above

-

PAaTTERNS IN PAscAL’s TRIANGLE

Have a look again at Pascal’s triangle. Forget for a moment where it comes from - just look
at it as a mathematical object. What do you notice?

There are lots of patterns hidden away in the triangle, enough to fill a reasonably sized
book. Here are just a few of the most obvious ones:
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1. The entries on the border of the triangle are all 1.
2. Any entry not on the border is the sum of the two entries above it.

3. The triangle is symmetric. On any row, entries on the left side are mirrored on the
right side.

4. The sum of all entries on a given row is a power of 2. (You should check this!)

We would like to state these observations in a more precise way, and then prove that
they are correct. Now each entry in Pascal’s triangle is in fact a binomial coefficient. The 1
on the very top of the triangle is (8). The next row (which we will call row 1, even though
it is not the top-most row) consists of ((1)) and (%) Row 4 (the row 1, 4, 6, 4, 1) consists of the

S

Given this description of the elements in Pascal’s triangle, we can rewrite the above obser-
vations as follows:

1. (j)=1land(}) =1

2. () = () + (-

3. (1) = ()

4 Q+H+E+-+()=2"

Each of these are an example of a binomial identity: an identity (i.e., equation) involving

binomial coefficients.
Our goal is to establish these identities. We wish to prove that they hold for all values
of n and k. These proofs can be done in many ways. One option would be to give algebraic

proofs, using the formula for (}):
n\ n!
k] (n=k)'k!

Here’s how you might do that for the second identity above.

Example:
Give an algebraic proof for the binomial identity

n\ (n-1 N n-1
k]l \k=1 k)
Proof. By the definition of (Z), we have

n-1\ (n-1)! B (n-=1)
(k—l)_(n—l—(k—l))!(k—l)!_(n—k)!(k—l)!an ( k

n-1y  (n-1)
)‘(n—1—mwr
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Thus, starting with the right hand side of the equation we are trying to establish:

(n—1)+(n—1)_ (n-1)! N (n—1)!
k-1 kT ook —1 T = 1= kKl
=Dk (n-1D(n-k)
Tk =k
=Dk + - k)
B (n—Kk)!k!
n!

T (kK

_(n

=,
The second line (where the common denominator is found) works because k(k—1)! =
kKland (n —k)(n —k—-1)! = (n — k). QED

This is certainly a valid proof, but also is entirely useless. Even if you understand the
proof perfectly, it does not tell you why the identity is true. A better approach would be to
explain what (}) means and then say why that is also what (}7}) + (") means. Let’s see

how this works for the four identities we observed above.

Example:
Explain why (’8) =1and (Z) =1.

Solution: What do these binomial coefficients tell us? Well, (f)) gives the number
of ways to select 0 objects from a collection of n objects. There is only one way to
do this, namely to not select any of the objects. Thus ({j) = 1. Similarly, () gives the
number of ways to select n objects from a collection of n objects. There is only one
way to do this: select all 1 objects. Thus (}) = 1.

Alternatively, we know that ({}) is the number of n-bit strings with weight 0.
There is only one such string, the string of all 0’s. So (j) = 1. Similarly (") is the
number of n-bit strings with weight n. There is only one string with this property,
the string of all 1’s.

Another way: ({)) gives the number of subsets of a set of size n containing 0
elements. There is only one such subset, the empty set. (%) gives the number
of subsets containing n elements. The only such subset is the original set (of all
elements).

Example:
Explain why (}) = (Zj) + (";Zl)-
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Solution: The easiest way to see this is to consider bit strings. (}) is the number
of bit strings of length n containing k 1’s. Of all of these strings, some start with
a 1 and the rest start with a 0. First consider all the bit strings which start with a
1. After the 1, there must be n — 1 more bits (to get the total length up to 1) and
exactly k — 1 of them must be 1’s (as we already have one, and we need k total).
How many strings are there like that? There are exactly (Z:%) such bit strings, so of
all the length n bit strings containing k 1’s, ({7}) of them start with a 1. Similarly,
there are (”;1) which start with a 0 (we still need n — 1 bits and now k of them must
be 1’s). Since there are (”,:1) bit strings containing n — 1 bits with k 1’s, that is the
number of length 7 bit strings with k 1’s which start with a 0.

Another way: consider the question, how many ways can you select k pizza
toppings from a menu containing n choices? One way to do this is just (}). An-
other way to answer the same question is to first decide whether or not you want
anchovies. If you do want anchovies, you still need to pick k —1 toppings, now from
just n — 1 choices. That can be done in (Zj) ways. If you do not want anchovies,
then you still need to select k toppings from n — 1 choices (the anchovies are out).
You can do that in (”;1) ways. Since the choices with anchovies are disjoint from
the choices without anchovies, the total choices are (’Zj) + (”;1) But wait. We
answered the same question in two different ways, so the two answers must be the
same. Thus (}) = (7)) + ("))

You can also explain (prove) this identity by counting subsets, or even lattice
paths.

Example:

n

Prove the binomial identity (}) = (,,",)-

Solution: Why is this true? (}) counts the number of ways to select k things from
n choices. On the other hand, (,,",) counts the number of ways to select n — k things
from n choices. Are these really the same? Well, what if instead of selecting the
n — k things you choose to exclude them. How many ways are there to choose
n — k things to exclude from n choices. Clearly this is (", ) as well (it doesn’t matter
whether you include or exclude the things once you have chosen them). And if
you exclude n — k things, then you are including the other k things. So the set of
outcomes should be the same.

Let’s try the pizza counting example like we did above. How many ways are
there to pick k toppings from a list of n choices? On the one hand, the answer
is simply (}). Alternatively, you could make a list of all the toppings you don't
want. To end up with a pizza containing exactly k toppings, you need to pick n — k
toppings to not put on the pizza. You have (,",) choices for the toppings you don’t
want. Both of these ways give you a pizza with k toppings, in fact all the ways to
get a pizza with k toppings. Thus these two answers must be the same: (}) = (,",).
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You can also prove (explain) this identity using bit strings, subsets, or lattice
paths. The bit string argument is nice: (}) counts the number of bit strings of length
n with k 1’s. This is also the number of bit string of length n with k 0’s (just replace
each 1 with a 0 and each 0 with a 1). But if a string of length n has k 0’s, it must

have n — k 1’s. And there are exactly (,",) strings of length n with n — k 1s.

Example:
Prove the binomial identity (§) + (}) + (5) +--- + (1) = 2.

Solution: Let’s do a “pizza proof” again. We need to find a question about pizza
toppings which has 2" as the answer. How about this: If a pizza joint offers n
toppings, how many pizzas can you build using any number of toppings from no
toppings to all toppings, using each topping at most once?

On one hand, the answer is 2". For each topping you can s